OG11b – PRO-ACT

Planetary RObots Deployed for Assembly and Construction Tasks

Shashank Govindaraj Team Lead, Robotics Software

shashank.govindaraj@spaceapplications.com

PRO-ACT in a nutshell

- Funded in the EC Horizon 2020 SPACE-12-TEC-2018 « SRC Space Robotics Technologies »
- 24 months long project
- Starting date: February 1st 2019. Ending date: January 31st, 2021.
- 9 partners from 6 countries

spaceapplications DEX PIPP QVS QVS CITY THALES

- Grant amount: 3.1 MEuros
- Total effort: 333 Person Months

Concept: Elements of a future Lunar Base

In-Situ Resource Utilisation (ISRU) enables sustainability in space exploration by harnessing available resources for supporting human exploration:

Background: ISRU

- Establishing structures for lunar habitats and commercial uses
- O2, He3 extraction from Regolith
- Regolith based 3D printing
- Lava tubes concentrated Ilmenite resources
- Commercial opportunities

Background: ESA ISRU Demo Mission

- ESA is preparing Lunar ISRU Demonstration Mission (ISRU-DM) by 2025, extraction of water or oxygen from the lunar regolith.
- Mining related activities include excavation and beneficiation (enrichment).
- **Ilmenite reduction process**: FeO-bearing minerals like Ilmenite, beneficiated from lunar regolith, are reacted with hydrogen in a reactor at 900-1000 deg C to produce water

 $\begin{array}{rcl} \text{FeTiO}_3 + \text{H}_2 & \rightarrow & \text{TiO}_2 + \text{H}_2\text{O} + \text{Fe} \\ \text{H}_2\text{O} & \rightarrow & \text{H}_2 + \frac{1}{2} \text{O}_2 \end{array}$

- O2 and H2 electrolytically produced
- SpaceApps ESA Projects:
 - Phase 0 study (ALCHEMIST) 2018
 - Earth-based ISRU demo plant breadboarding (ALCHEMIST-ED) 2019
 - Phase A/B1 + Breadboarding (ALPHA) 2019
 - Aim: to produce 100 grams of water on the Lunar surface by 2025-2028

Background: Solar 3D printing using Regolith

- NASA Regolith Simulants
 - JSC-1AF, fine, 27 µm average size
 - JSC-1A, a reproduction of JSC 1, less than 1 mm size
 - JSC-1AC, coarse, a distribution of sizes < 5 mm

PRO-ACT: Objectives

Implement and demonstrate multi-robot collaborative planning and manipulation capabilities in a lunar mining and construction context.

- <u>Cooperative</u> exploration, excavation and preparation of sites
- <u>Cooperative</u> mission planning, goal decomposition and task execution
- <u>Collaborative</u> assembly of an Lunar ISRU plant components
- <u>Assisting</u> (partial) assembly of a mobile gantry lifting and 3D printing building and dust mitigation elements

CITY

PRO-ACT – Specific Objectives

 Specific Objective 1 (SO1): Reviewing, extending and integrating ESROCOS, ERGO, InFuse, I3DS and SIROM outcomes as part of a comprehensive multi-robot system

 Specific Objective 2 (SO2): CREW (Cooperative Robotics for Enhanced Workforce) consisting of integrated components from ERGO, InFuse, cooperative SLAM and ESROCOS

• **Specific Objective 3 (SO3):** Customizing existing mobile robotic platforms and preparing facilities in relation to (1) ISRU capabilities establishment and (2) preparing dust mitigation surfaces (3) Partially assembling and deploying a gantry/3D printer.

PRO-ACT Objectives

UNIVERSITY OF LONDON EST 1894

THALES

PRO-ACT Scenario

Addressed Sections of a Lunar scenario

- 1. Fine scale surveying of areas prior to carry out construction work
- 2. Site clearing by grading and shoveling (from stones and debris)
- 3. Unloading equipment/construction elements from the lander(s) and transporting them to the assembly sites
- 4. Assembly of specific modular components of an ISRU plant
- 5. Assisting partial assembly and mobility of cable driven gantry
- 6. 3D printing of modular building elements from pseudo-regolith simulant
- 7. Sample assembly of printed elements (bricks) to construct simple structures, habitation spaces and dust mitigation surfaces.

Addressed Sections of a Lunar scenario

Surveying

Grading (credit: PISCES)

Tile/brick/modular block 3D printing (credit: Cornell)

Tiling/modular block assembly (credit: PISCES)

Transportation

Assembling modular components, deploying hardware (ICRA.2015.7138999)

An indicative illustration of the potential tasks (analogues or Earth-based applications)

Unloading

THALES

PRO-ACT Consortium

Partner	Logo	Country	Role
Space Applications Services	spaceapplic	BE	Coordinator, Infuse adaptation, SIROM adaptation, system integration, communications, mission control
DFKI		DE	Mantis HW adaptations, Simulation, mission control, mobility and manipulator control SW, Integration of CREW
ΡΙΑΡ	Pirp	PL	Ibis HW adaptations, locomotion and manipulator control SW, Exploitation, Integration of CREW
GMV		ES	Design and support for ESROCOS functional layer for robots and ERGO adaptation for CREW
University of Cranfield		UK	Cooperative SLAM, integration with CREW, Dissemination
LAAS-CNRS	LAAS	FR	Cooperative manipulation – planning and control, integration with CREW
THALES	THALES	UK	Compact I3DS ICU adaptation, I3DS sensors, HW acceleration
AVS	added value solutions	ES	Modular mobile gantry, Control of 3D printing head, integration of CREW
La Palma Research Center	Market LPRC	ES	Requirement analysis, site access and preparation, end user
spaceapplications		COVS CORE SOLVERS	THALES CNRS () LPRC 13

Single Agent System Architecture

spaceapplications

THALES

Adapting and integrating previous OGs outcomes

- 1. ESROCOS: extending the framework to allow for distributed (multi-OBC) configuration, integration with functional layer of robot
- 2. ERGO: Extending the framework for multi-robot mission, path and task planning centralized and experimentally distributed configuration
- 3. InFuse: Deploying relevant data fusion methods, adaptations to existing techniques and introducing cooperative SLAM
- 4. I3DS: Optimization for a compact ICU, relying more extensively on FPGA for RT low level data fusion
- 5. SIROM: design adaptation to specific end effector needs => new tools, integration with heterogeneous robots

CREW - Cooperative Robotics for Enhanced Workforce

- Centralized and decentralized (experimental) multi-robot mission planning
- Cooperative manipulation planner
- Interface with robot functional layer
- Integration with DFPCs for cooperative localization and mapping

Multi-Agent Planning for Collaboration

Robot adaptations

UNIVERSITY OF LONDON EST 1894

THALES

SIROM based end effector tools

Simulation environment, Communications & Control Center

- Environment Simulation with improved physics and robot dynamics for cooperative manipulation
- Communications –IP Mesh radio based high bw, ad-hoc, reliable network
- Extension of multi-robot control center for specific scenario

Testing and Validation

CITY UNIVERSITY OF LONDON EST 1894

Thank you

shashank.govindaraj@spaceapplications.com

